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Abstract

Alzheimer’s disease (AD) is an irreversible neurodegenerative disease caused by rapid
degeneration of brain cells. More and more researchers focus on effective and accurate
methods for the diagnosis of AD. In this paper, a method to identify AD by extract-
ing equal-distant ring shape context features from saliency map of structural magnetic
resonance imaging (sMRI) is proposed. The experimental results on the thin-layer MR
images of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset showed that
our method helped improve the performance of identifying brain diseases. Specifically,
the classification accuracy of 94.83% for AD versus CN, 98.31% for AD versus MCI and
85.77% for MCI versus CN, respectively. At the same time, experiments on Open Access
Series of Imaging Studies dataset and clinically collected thick-layer MR images verify the
classification performance of the method. The results show that this method may have
higher application value in clinical application, with classification accuracies of 96.56% and
98.18% for AD versus CN, respectively. Compared with the methods based on gray mat-
ter (GM) density, cortical thickness and hippocampal volume, our method achieved higher
accuracy of AD (or MCI) and CN classification.

1 INTRODUCTION

Alzheimer’s disease (AD) is a common neurodegenerative dis-
ease, mainly manifested as cognitive function impairment,
behavioral disorder and mental abnormality, which has seriously
affected the daily life of the elderly [1]. At present, there are at
least 50 million AD patients or other types of dementia patients
in the world. With the aging of the global population, AD
patients are expected to double by 2050 [2, 3]. In 2018, the cost
of treatment and care for AD patients in the world had reached
trillions of dollars, which had brought a heavy economic burden
on patient’s family and society. Because the damage of central
nervous system in patients with AD is irreversible, there is no
effective clinical treatment at present, and the only treatment
scheme is to delay the progression of the disease as far as pos-
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sible. Mild cognitive impairment (MCI) is an intermediate stage
between normal aging and AD [4–6]. Studies have shown that
if MCI is not treated as early as possible, further decline of cog-
nitive function will lead it to develop into AD. Although MCI
has a high risk of developing into AD, if it can be detected and
treated as soon as possible, the condition of MCI patients does
not necessarily develop to AD [7–9]. Therefore, early detection,
diagnosis and treatment of MCI can delay the progression of
AD, which has important clinical and social significance [10].

Typically, the accurate diagnosis of AD, MCI, and cogni-
tive normal cohorts (CN) by clinicians depend heavily on
neuropsychological tests, such as Mini-Mental State Examina-
tion (MMSE), Functional Activities Questionnaire (FAQ) and
Clinical Dementia Rating (CDR). But neuropsychological tests
are more subjective and only suitable for patients who have
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some clinical symptoms. With the rapid development of med-
ical imaging modalities, magnetic resonance imaging (MRI),
Single-Photon Emission Computed Tomography (SPECT) and
Positron Emission Tomography (PET) images has played an
important in diagnosis of brain diseases [11–20]. However, the
diagnosis of AD by clinicians using medical imaging mainly
depends on a large number of clinical training and experience,
and has a certain degree of subjectivity, which will affect the
accuracy of AD diagnosis. Extensive clinical training and expe-
rience make it more difficult for new or inexperienced clinicians
to diagnose AD. Therefore, with the development of machine
learning, the study of computer-aided diagnosis (CAD) meth-
ods that accurately classify AD (or MCI) and CN by combining
medical imaging and machine learning has become a hot topic.

Although these modalities of new imaging techniques have
been used in the auxiliary diagnostic research of AD in recent
years, structural MRI (sMRI) is still an effective aid to assist in
the early diagnosis of AD. The classification performance of
CAD methods based on sMRI and machine learning usually
depends on features, and therefore feature extraction becomes
a critical step in the classification framework. The most com-
monly used feature extraction methods for sMRI data include
voxel-based methods and region of interest (ROI)-based
methods.

Voxel-based methods extract voxel-wise imaging features
from the whole brain sMRI to construct classifiers for distin-
guishing AD (or MCI) from CN. For example, Klöppel et al.
[21] used voxel-based morphometry (VBM) to generate a gray
matter (GM) density map of the whole brain as the input of
support vector machine (SVM) classifier to train a classifica-
tion model to diagnose AD. Li et al. [22] used a multivariate
method to extract six cortical features of each participant, and
used a linear SVM model to classify MCI and NC. Chu et al.
[23] mainly extracted features from GM segmentation map of
T1 MR images, and excluded voxels less than 0.2, which have
299,477 voxels in each subject, served as the input features to
the feature selection and SVM classifier. Salvatore et al. [24] pro-
posed a method based on machine learning for AD (or MCI)
and CN classification, which used PCA to reduce the density of
GM and white matter (WM) images to get the features.

ROI-based methods employ imaging features extracted from
brain regions, while these regions are usually pre-determined
based on biological prior knowledge or anatomical brain atlases.
For example, Zhang et al. [25] and Kim et al. [26] proposed a
method to classify AD (or MCI) and CN by SVM. The input
features of these methods are calculated as the volume of GM
within 93 ROIs on MRI and PET images, as well as the orig-
inal values of three cerebrospinal fluid (CSF) measurements.
Wee et al. [27] constructed a regional cortical thickness similarity
map for each subject to describe the relative changes in cortical
thickness between ROI pairs, which can significantly improve
the classification performance of AD. In the literature, [28] pro-
posed a new method for feature selection of hybrid voxel-wise,
which combine t-test and genetic algorithm based on Fisher’s
criterion. The method of Tong et al. first used sparse represen-
tation techniques to calculate grading biomarkers for each MCI
subject. Then, the grading biomarkers are combined with age

and cognitive indicators to provide a more accurate prediction
of MCI to AD conversion [29]. Liu et al. [30] first non-linearly
register each sMRI separately onto multiple pre-selected atlases,
and then extract multiple sets of atlas features for this MR
image to construct ensemble classification models for AD/MCI
diagnosis. Sørensen et al. [31] extracted the volume and tex-
ture features of the hippocampal in sMRI as the input of the
SVM classifier to classify AD. Ahmed et al. proposed two AD
classification methods based on hippocampal features: in liter-
ature [32], they used the circular harmonic functions (CHFs)
to extract local features from the hippocampus and posterior
cingulate cortex (PCC) to learn SVM classifiers for AD/MCI
diagnosis. In literature [33], the classifiers trained independently
based on hippocampal and CSF features were combined, fol-
lowed by another classifier to further refine the diagnostic per-
formance. Zhao et al. [34] also proposed an AD classification
method based on hippocampal features. They extracted 56 fea-
tures of each hippocampus, including intensity, shape, texture
and wavelet features.

In general, the features of voxel-based methods usually have
high dimensionality, which may cause potential overfitting
problems. Therefore, the classification performance of voxel-
based methods largely depends on the dimensionality reduction
methods. The ROI-based features have low feature dimension
and can extract the features of ROIs which are highly related
to disease. Therefore, the feature ROI based can improve the
classification performance and has been widely used [35]. In
this paper, we propose a feature extraction method of equal-
distant rings shape context (EDRSC), including saliency map
detection, equal-distant rings segmentation and shape context
algorithm based on chessboard distance. First, the ROIs of
sMRI are extracted, including left and right hippocampus.
Second, a visual attention model called PFT (Phase spectrum of
Fourier Transform) model is exploited to detect saliency map
of ROIs. Then, the shape contour of saliency map is segmented
by equal-distant rings, and then the EDRSC features of saliency
map are extracted. Finally, Support Vector Classification (SVC)
is used to build a disease classification model. The main con-
tributions are that (1) The ring based on equal distance can be
uniformly divided the whole shape contour, and the distribution
of all points on the image contour can be uniformly reflected.
(2) In the rectangular coordinate system, the set of the pixels
in each ring are determined by the chessboard distance, and
the spatial position information of the whole target shape can
be obtained, including the distance information and direction
information. (3) Attention selection is an important mechanism
of human visual perception. It is a conscious activity in which
human chooses and keeps important information from a large
amount of information input from the outside world and
ignores useless or secondary information. Therefore, in this
paper, the visual attention model is used to detect the saliency
map of MR images, and the selection of salient regions con-
taining important information to construct EDRSC features
can improve the classification performance of our method.
(4) The experimental results on the thin-layer MR images of
the open datasets (ADNI and Open Access Series of Imaging
Studies [OASIS]) and the thick-layer MR images collected in
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TABLE 1 Characteristics of the ADNI dataset subjects used in this study

Diagnosed Number of subjects Gender(M/F) Age (Mean ± SD) MMSE (Mean ± SD) CDR (Mean ± SD)

AD 95 57/38 75.91 ± 7.38 22.78 ± 2.65 0.88 ± 0.35

MCI 195 132/63 75.50 ± 7.40 27.02 ± 2.39 0.51 ± 0.15

CN 158 85/73 77.06 ± 4.92 29.04 ± 1.27 0.03 ± 0.11

Note. MMSE, Mini-Mental State Examination; SD, standard deviation.

clinic showed that regardless of the thin-layer MR images or the
thick-layer MR images, which can get good classification results
and have higher application value in clinical application.

2 MATERIALS AND IMAGE
PRE-PROCESSING

All thin-layer 3D images in this study are downloaded from
the public dataset Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI), which included MR images of subjects with AD,
MCI and CN (The URL of the dataset is adni.loni.usc.edu).
ADNI dataset was launched in 2003 to connect researchers with
research data. The dataset is divided into four stages: ADNI1,
ADNI/GO, ADNI2 and ADNI3. It collects a large amount of
MRI and PET images, genetic data, blood biochemical indi-
cators and CSF data. The primary goal of ADNI is to ver-
ify and determine the relationship between the collected data,
determine the progression of AD, and provide the basis for
early diagnosis and treatment of AD. ADNI’s research proto-
col was approved by the local institutional review board. The
study protocol is specifically as follows: ADNI recruited more
than 800 adults including CN subjects, AD subjects and MCI
subjects to participate in the study, where age range is 55–90
years (all subjects signed a written informed consent). Specifi-
cally, 200 CN subjects were observed for 3 years, and 400 MCI
subjects and 200 AD subjects were followed up for 3 years and
2 years, respectively.

2.1 Subjects

In our method, the images of 448 subjects in the ADNI1/GO
stages are mainly selected for the experiments. These MR T1-
weighted images are acquired using MPRAGE or equivalent
protocols of different resolutions with a slice thickness of 1.2
mm, which have undergone several pre-processed steps of
research groups belonged to the ADNI. In detail, first, the geo-
metric distortion of the image caused by the gradient model was
corrected,and then the B1 non-uniformity of the image inten-
sity was corrected. Finally, the N3 histogram peak sharpening
algorithm was applied to reduce the intensity non-uniformity of
the image. The detailed statistical of all research subjects in our
method are shown in Table 1, which are divided into three dif-
ferent classes.

CN: They were the normal control group collected by ADNI
who did not have depression, MCI, or other dementia. The
MMSE score of these subjects is 24 to 30, with the CDR score
of 0 [36, 37].

MCI: They have no significant other cognitive impairments
and maintain their daily activities. The MMSE score is between
24 and 30, and CDR of 0.5.

AD: They were the ADNI collection of subjects identified as
AD who met the NINCDS/ADRDA criteria for possible AD
[38]. The MMSE score of AD is between 20 and 26, and CDR
of 0.5 to 1.

2.2 MR image pre-processing

The pre-processing is divided into three steps: tissue segmen-
tation, discriminative ROIs extraction, and image slices gen-
eration. In this section, we will describe these three steps in
detail.

1) Tissue segmentation: Many studies have shown that the
main morphological and structural abnormalities of AD are
GM in the brain. Therefore, the accuracy of CAD system is
largely dependent on brain tissue or structural segmentation,
such as GM or WM tissue section. In this study, all of orig-
inal 3D MR images downloaded from the ADNI dataset in
the NIFTI format are segmented using the CAT12 (dbm.neuro.
uni-jena.de/cat/) toolkit running on MATLAB (mathworks.cn)
software. CAT12 is a MATLAB toolkit based on SPM12 (fil.
ion.ucl.ac.uk/spm/), which developed by Christian Gaser and
Robert Dahnke of Departments of Psychiatry and Neurology
at Jena University Hospital, Germany. The tissue segmentation
procedure can be implemented via the module ‘Segment Data’.
This is mainly to register all 3D MR images into the MNI space
(MNI152 T1 1.5mm brain) by Dartel registration to achieve spa-
tial standardization [39, 40]. Finally, the skull of each MR image
is removed, and the GM MR image of size 121 × 145 × 121
voxels are obtained. The results are shown in Figure 1a.

2) Discriminative ROIs extraction: In general, AD and age-
matched healthy old people have apparent morphological struc-
tural abnormalities compared to their brain structures, including
the volume reduction of the hippocampus and the increase in
the ventricles. Therefore, in this study, we performed t-tests on
different categories of subjects to obtain areas of severe atrophic
brain atrophy associated with AD. It can be obtained from
Figure 1b that the discriminative ROIs are the left and right hip-
pocampus region (p <0.0001). Therefore, the left and right hip-
pocampus are used as a set of distinguish the ROIs in order to
better compare AD (or MCI) and CN. The specific ROIs extrac-
tion steps are as follows: First, in order to extract the most dis-
criminative ROIs of the hippocampus, we use the AAL Atlas
to make the left and right hippocampus mask according to the
brain region number [33, 41]. Then, multiply the obtained mask
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FIGURE 1 MR image pre-processing: (a) Tissue Segmentation (b) Discriminative ROIs Selection (c) Image Slices Generation

FIGURE 2 Block diagram of our method

with the GM maps to obtain the left and right hippocampus of
all 3D images. The results are shown in Figure 1b.

3) Image slices generation: Brain MRI scan is to scan the
whole brain one by one along the anatomical axis of the human
body. One layer is an image slice, and each slice is a conventional
2D image. All of these 2D images come together to form a 3D
MRI. The extraction of 3D brain MRI features are very complex
and time consuming. In order to reduce the time of the feature
extraction, we use the MRIcro software to save each layer of
the Transverse View section of the left and right hippocampus
ROIs image as 2D images with BMP format (McCauslandcen-
ter.sc.edu/crnl/mricro/). The results are shown in Figure 1c.

3 METHOD

This study can be described as the following several main steps.
First, all 3D MR image are pre-processed according to the pre-

processing steps in Section 2.2 to obtain the BMP image of
ROIs. Second, PFT model is exploited to detect saliency map
of ROIs BMP image. Then, the shape context of equal-distance
ring-based method is used to extract shape features of saliency
map. Finally, SVC is used to build the disease classification
model. The framework of our method is illustrated in Figure 2,
and we will describe the detailed process of feature extraction in
later sections.

3.1 Saliency map detection

Visual attention mechanism is the key to ensure high efficiency
of visual cognition process. It can select visual sensory informa-
tion and only provide the important information to visual per-
ception process, while the other information is rejected, thus
making visual cognition process active and selective. With the
increasing interest of researchers in visual attention research
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FIGURE 3 Schematic diagram of a partition
with five rings: (a) Concentric Rings Partition (b)
Concentric Rings Partition based on Equal-Distance

and the increasing ability of computer to process information
and realize complex computer vision system, many visual atten-
tion models are proposed, such as NVT (Neuromorphic Vision
Toolkit) model [42], STB (Saliency ToolBox) model [43], SR
(Spectral Residual) model [44], and PFT model [45]. In this
paper, we use the PFT model for saliency map detection because
it runs faster and more effectively than the NVT model, STB
model, and SR model. The PFT model is a model that calcu-
lates the salient region of the image in the transform domain.
It uses the phase spectrum of the Fourier transform to extract
the salient region of the image. I (x, y) represents an input image.
It is assumed that F and F−1 represent Fourier transform and
inverse Fourier transform of the image, respectively. Therefore,
the saliency map of the detected image using the PFT model can
be expressed by the following equation [45]:

M (x, y) = g(x, y) ∗ ‖F−1[ei⋅p(x,y)]‖2
. (1)

Where g(x, y) represents a two-dimensional Gaussian filter
(sigma=8), and p(x, y) is determined by the following formula:

p(x, y) = P ( f (x, y)). (2)

Where P (.) represents the phase spectrum obtained by Fourier
transform of the input image, and f (x, y) is defined as follows:

f (x, y) = F (I (x, y)). (3)

Through saliency map detection, an area consistent with the
attention focus of human visual system can be obtained. There-
fore, we use PFT model to perform saliency map detection on
the left and right hippocampus 2D images, respectively. Then,
the edge detection of left and right hippocampus are carried
out on the saliency map. Because the Canny operator has the
advantages of accurate boundary point location, low error rate
of edge detection edge and single pixel point, Canny edge detec-
tion operator is used to obtain the edge information of saliency
map. After obtaining the edges of the left and right hippocam-
pus, image features can be calculated.

3.2 Image feature extraction

Traditional shape context (SC) is mostly used for shape match-
ing and target recognition [46, 47], which is a feature description
method based on shape contour proposed by Belongie et al.
[48]. The traditional SC is calculated as follows:

Step1: Contour detection. For a given shape I , the edge of the
contour is obtained by the edge detection operator, and a set of
discrete points P = {P1, P2, P3,… , PN } is obtained by sampling
the edge of the contour.

Step2: Shape context calculation. In the log-polar coordinate
system, with any point Pi as the reference point, multiple con-
centric circles are established by Euclidean distance in the local
area where Pi is the center of the circle and Rk(k = 1, 2, 3, 4, 5)
is the radius. Each concentric circle is divided into multiple divi-
sions in the circumferential direction as shown in Figure 3a. The
vector relative position of the point Pi to the other points is
reduced to the number of dot distributions within each sector.
The statistical distribution histogram of these points, called the
shape context of point Pi .

In this study, a new feature extraction method based on shape
context of equal-distance ring is introduced. comparing Fig-
ure 3a,b, it can be seen that the ring based on equal-distance
divides the whole shape contour evenly and can better reflect
the distribution of all points on the image contour. In order to
be able to quantify, the direction parameter and distance param-
eter are introduced into the equal-distance rings, where the
direction parameter represents the number l of sectors divided
into a circle, such as the direction parameter in Figure 3b is
12, and the distance parameter represents the number k of the
equal-distance rings, as shown in Figure 3b is 5. Figure 3b is a
schematic diagram of a partition with five equal-distance rings.

Suppose an image I , the size of M × N , and all the points on
the contour of image are recorded as P = {P1, P2, P3,… , PN },
(x, y) is the horizontal and vertical coordinate value of point
Pi on the contour, Rk is the radius of the kth ring of equal-
distance(k = 1, 2, 3, 4, 5), as shown in Figure 3b. It is obvious
that here, the contour image is divided into a set of rings
of equal distance, That is, R1 = R2 = R3 = R4 = R5. Here,
the shape context based on the equal-distance rings uses the
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chessboard distance instead of the Euclidean distance on the
basis of the traditional shape context, and the ring partition can
be performed in the following manner:

Rk = Max(dx,y )∕Num(k)(k = 1, 2, 3, 4, 5). (4)

Where dx,y represents the checkerboard distance of each point
Pi coordinate (x, y) on the contour to the equal-distance rings
center coordinates (xc , yc ), the formula is as follows:

dx,y =

n∑
i=1

Max[|xi − xc |, |yi − yc |], (5)

xc = round (N∕2), yc = round (M∕2), (6)

In this study, the shape context features based on equal-distance
rings are carried out in rectangular coordinate system. First, the
chessboard distance between each pixel point and the center
point of the image is calculated, and then the chessboard dis-
tance is compared with the radius of each ring to determine the
set of pixel points in each ring. Finally, the histogram statistics
of all the ring sectors can get the spatial position information
of all the points of the entire target shape, including distance
information and direction information.

Let Sk be the set of pixel values of the kth ring (k =
1, 2, 3, 4, 5), and Hl be the number of pixel value sets on the
l th sector of each ring (l = 1, 2, 3,… , 12), so the feature vector
size of each ROI is 1 × 60. The detailed rules are as follows:

S1 = {(x, y)|dx,y ≤ R1}, (7)

Sk = {(x, y)|Rk−1 ≤ dx,y ≤ Rk} (k = 2, 3, 4, 5), (8)

Hl = #{Pi |(x, y) ∈ Sk, (y∕x ) ∈ [tan 0◦, tan 360◦]} (9)

3.3 Classification model

In this study, we used LIBSVM to build SVC model for AD clas-
sification [49]. LIBSVM is an open source library based on SVM
[50–54]. It was developed by Professor Chih-Jen Lin of Taiwan
University. It is mainly used for classification (supporting binary
classifications and multiple classifications) and regression. LIB-
SVM is characterized by its simplicity of operation, ease of use,
fast and efficient, and relatively few adjustments to the parame-
ters involved in SVM.

4 EXPERIMENTS

4.1 Validation methods and evaluation
metrics

To estimate the classification performance of this method, 10
times 10-fold cross validation was used to verify the classifica-

tion experiment results. The basic principle of 10-fold cross val-
idation is to randomly divide the obtained image features into 10
groups, each group is 10% of the total data, of which 9 groups
are used each time to build the classification model, and the rest
of group is used for testing. Then repeat the above steps for 10
times to calculate the total accuracy. 10 times 10-fold cross veri-
fication is to repeat the above steps 10 times. In the experiment,
four metrics values such as Accuracy (ACC), Sensitivity (SEN),
Specificity (SPE) and area under the ROC curve (AUC) are
given to illustrate the classification performance of the method.
In generally, the method has a low classification performance
in AUC value of 0.5–0.7; at 0.7–0.9, the classification perfor-
mance can be considered moderate; if it is greater than 0.9, the
classification performance is considered to be higher [55]. The
evaluation parameters are calculated by the following equation:

ACC = (TP + TN)∕(TP + TN + FP + FN),

SEN = TP∕(TP + FN),

SPE = TN∕(TN + FP).

Where TP is true positive, TN is true negative, FP indicates
false positive and FN represents false negative.

4.2 Classification experimental results

In the experiment, we first test the classification performance
of the method. In this study, left and right hippocampus image
features are extracted, respectively. Therefore, the input fea-
tures are divided into three types, including only left hippocam-
pal features (HL for short) , only right hippocampal features
(HR for short) and combined with left and right hippocam-
pal features (HC for short), and three classification results were
obtained. In order to better evaluate the positive effect of the
equal-distant rings segmentation step in this method, we com-
pared the traditional SC method (called SC) with our EDRSC
method. At the same time, in order to compare the influence
of different distance measurement methods on the method, we
use different distance measurement methods to conduct exper-
iments. Among them, EDRSC-based chessboard distance is
called EDRSC-CD, EDRSC-based Euclidean distance is called
EDRSC-ED, and EDRSC-based city block distance is called
EDRSC-BD. Table 2 summaries all the results.

It can be seen from Table 2: (1) The classification per-
formances of EDRSC-ED, EDRSC-BD, and EDRSC-CD are
superior to SC, which shows that the features extracted based
on the step of equal-distant rings segmentation have better clas-
sification results. (2) Among the three classification tasks, the
classification results of EDRSC-ED and EDRSC-BD are not
much different from EDRSC-CD, but the classification results
of EDRSC-CD achieved the highest classification accuracy (The
best results are shown in bold in the table). Specifically, in clas-
sifying AD from CN, the classification accuracy of HC and
HL of all three methods are higher than of HR. Among them,
Using HL features, the EDRSC-CD achieved the classification
ACC of 97.43%, SEN of 97.82%, SPE of 97.37%, and AUC
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TABLE 2 Comparison of classification performances (%) of the competing methods

AD versus CN AD versus MCI MCI versus CN

Method Features ACC (%) SEN (%) SPE (%) AUC ACC (%) SEN (%) SPE (%) AUC ACC (%) SEN (%) SPE (%) AUC

SC HL 76.69 57.60 88.48 0.810 66.83 0.530 99.22 0.518 66.40 72.81 59.36 0.730

HR 64.06 11.88 95.51 0.629 66.28 3.520 97.17 0.608 60.00 72.64 44.97 0.657

HC 66.88 24.17 93.33 0.661 66.72 1.600 98.48 0.554 66.69 73.37 59.20 0.736

EDRSC-ED HL 91.62 84.94 95.68 0.962 91.66 90.56 92.27 0.975 79.99 84.79 74.07 0.881

HR 88.80 84.92 91.36 0.945 91.38 86.00 94.32 0.967 83.98 86.49 80.96 0.888

HC 94.58 91.43 96.48 0.972 96.00 93.67 97.16 0.990 85.94 86.69 85.32 0.933

EDRSC-BD HL 95.81 94.32 96.49 0.988 94.62 96.28 93.66 0.984 76.71 82.48 69.74 0.856

HR 91.58 89.77 92.53 0.969 91.41 85.27 94.44 0.959 86.03 89.10 82.12 0.860

HC 93.94 90.82 95.74 0.987 96.79 94.78 97.80 0.994 86.54 87.37 85.70 0.919

EDRSC-CD HL 97.43 97.82 97.37 0.987 94.83 92.13 96.25 0.984 80.06 84.61 74.96 0.885

HR 84.13 75.99 88.66 0.922 82.14 65.40 90.37 0.890 88.35 91.08 85.42 0.951

HC 94.83 96.10 94.18 0.980 98.31 98.18 98.35 0.993 85.77 88.52 82.80 0.939

TABLE 3 Comparison of classification accuracy with state-of-the-art methods

ACC (%)

Methods Modality (AD/MCI/CN) Feature measures AD versus CN MCI versus CN

Voxel based Chu et al. [23] MRI(131/261/188) Voxel-wise GM 85.00 67.00

Salvatore et al. [24] MRI(137/76/162) WM and GM density maps 76.00 72.00

ROI based Zhang et al. [25] MRI+PET+CSF(51/99/52) Volume of GM within 93 ROI
on MRI and PET + CSF

93.20 76.40

Kim et al. [26] MRI+PET+CSF(51/99/52) Volume of GM within 93 ROI
on MRI and PET + CSF

93.20 85.40

Wee et al. [27] MRI(198/200/200) Cortical thickness +
Hippocampus volumes

92.35 83.75

Ahmed et al. [32] MRI(137/162/210) CHFs hippocampus and
posterior cingulate cortex

83.77 69.45

Ahmed et al. [33] MRI(35/111/72) Hippocampal CHF and CSF 87.00 78.22

Proposed method MRI(95/195/158) Hippocampal EDRSC 94.83 85.77

of 0.987; and the ACC, SEN, SPE and AUC of EDRSC-ED
and EDRSC-BD are 91.62% versus 95.81%, 84.94% versus
94.32%, 95.68% versus 96.49% and 0.962 versus 0.988, respec-
tively. And using HC features, EDRSC-ED, EDRSC-BD and
EDRSC-CD achieved the classification ACC of 94.83% ver-
sus 94.58% versus 93.94%, SEN of 96.10% versus 91.43%
versus 90.82%, SPE of 94.18% versus 96.48% versus 95.74%,
and AUC of 0.980 versus 0.972 versus 0.987, respectively. For
the classification of AD and MCI, we can see that the per-
formance of any single type feature of the three methods is
lower than the performance of their combination. Among the
three types, the HR show the lowest performance. However,
when combined with HL, HR can help improve classification.
For example, in EDRSC-CD method, the performances using
HC demonstrate 3.48% and 16.17% improvements in terms of
ACC over the cases of only using HL and HR, respectively.

Similar results are obtained for EDRSC-ED and EDRSC-BD
methods. In MCI versus CN, EDRSC-CD achieved the ACCs
of 80.06%(HL), 88.35%(HR), and 85.77%(HC), while EDRSC-
ED and EDRSC-BD achieved the ACCs of 79.99% versus
76.71%(HL), 83.98% versus 86.03%(HR), and 85.94% versus
86.54%(HC), respectively.

4.3 Comparison with state-of-the-art
methods

In Table 3, the classification accuracy of our method is com-
pared with the results of several methods that use sMRI data as
the research subject and SVM as the classifier to classify AD ver-
sus CN and MCI versus CN, including two voxel-based meth-
ods [23, 24] and five ROI-based methods [25–27, 32, 33]. It is



8 LAO ET AL.

worth noting that the performance evaluation of these methods
concerns the feature extraction method rather than the design
of the classifier. And in order to ensure the classification perfor-
mance of each method, the classification results of each method
in the table are the best results obtained through experiments
on its original dataset [25, 26, 32 56, 57]. Although the sMRI
data selected by all methods for experiments are not exactly the
same, the sMRI images of all methods come from ADNI and
are obtained by MPRAGE or equivalent protocols of differ-
ent resolutions, which have been uniformly processed by sev-
eral pre-processing steps of ADNI research groups (See Sec-
tion 2.1 for details). Therefore, although the results in Table 3
are may not completely comparable, we can roughly comparing
our study (i.e. the last row of Table 3) with these state-of-the-art
methods to verify the efficacy of our proposed method.

Specifically, of the two voxel-based methods, Chu et al. [23]
used 131 AD patients and 188 CN patients for AD diagnosis
with an accuracy of 85.00%, and used 261 MCI patients and 188
CN patients for MCI diagnosis with an accuracy of 67.00% . In
Salvatore et al. [24], they used 137 AD patients, 76 MCI patients
and 162 CN to classify AD and MCI. The accuracy of 76.00%
for AD classification, and the accuracy of 72.00% for MCI clas-
sification. In the ROI-based method, Zhang et al. [25] and Kim
et al. [26] et al. used 51 AD patients, 77 MCI patients and 52
CN patients to classify AD and MCI. By using three modes
(MRI+ PET+CSF) as features, they reported that the accuracy
of 93.20% for AD classification, and the accuracy of 76.40%
and 85.40% for MCI classification, respectively. Wee et al. [27]
integrated cortical thickness, cortical volume and hippocampal
volume as features to classify AD and MCI. Among 198 AD
patients, 200 MCI patients, and 200 CN patients, the accuracy
of 92.35% for AD classification, and the accuracy of 83.75% for
MCI classification. Ahmed et al. also studied the feature extrac-
tion of hippocampal ROI. Literature [32] used 137 AD patients,
162 MCI patients and 210 CN patients for AD and MCI clas-
sification. By extracting the CHFs coefficients of hippocampus
ROI and posterior cingulate cortex ROI as features, they report
the accuracy of 83.77% for AD classification, and the accuracy
of 69.45% for MCI classification. Literature [33] used 51 AD
patients, 111 MCI patients and 72 CN patients to classify AD
and MCI. By using the imaging mode and CSF (hippocampal
CHF and CSF) as features, they reported that the accuracy of
87.00% for AD classification, and the accuracy of 78.22% for
MCI classification. For our method, we use 95 AD patients, 195
MCI patients and 158 CN patients to classify AD and MCI. In
AD versus CN, our method achieved the classification accuracy
of 94.83%. For classifying MCI from CN, we achieved classifi-
cation accuracy of 85.77%.

4.4 Verification on the OASIS dataset

To further verify the classification performance of this study,
we conducted training and testing on another public dataset
(OASIS dataset).The OASIS is a series of MRI datasets, includ-
ing OASIS-1, OASIS-2 and OASIS-3, which can be used pub-
licly by researchers. OASIS-3 is a dataset used to classify and

TABLE 4 Characteristics of the OASIS dataset subjects used in this study

Diagnosed Gender (M/F) Age (Mean ± SD) MMSE (Mean ± SD)

AD 53/61 75.65 ± 8.01 24.07 ± 4.07

CN 49/81 67.01 ± 8.27 29.19 ± 1.06

diagnose CN and AD, collecting longitudinal neuroimaging,
clinical indicators, cognitive scores and biomarkers of subjects.
The subjects included 609 CN and 489 AD, with an age range
of 42–95 years. The dataset collected more than 2000 MR ses-
sions containing multiple sequences such as T1w, T2w, FLAIR,
resting-state BOLD and DTI, and also provided segmentation
files generated by MR sessions processed by Freesurfer soft-
ware. All T1w MR images are available via www.oasis-brains.org.
In our method, the T1w MR images of 244 subjects in the
OASIS-3 are mainly selected for the experiments, including 114
AD subjects and 130 CN subjects. The detailed statistical of all
research subjects are shown in Table 4.

We compared the results of the AD and CN classification
experiments on the OASIS and ADNI datasets, as shown in
Figure 4. It can be seen from the Figure 4 that when only the
ADNI dataset images are available, the ACC of 94.83%, SEN
of 96.10%, SPE of 94.18% and AUC of 0.980. When only the
OASIS dataset images are used for training and testing, the ACC
of our method was 96.56% (SEN= 96.14%, SPE= 96.85% and
AUC = 0.996). When the ADNI and OASIS datasets are used
for experiments, the ACC, SEN, SPE and and AUC of 92.65%,
92.36%, 92.86% and 0.973, respectively. From this experiment,
we can see that the results of AD and CN classification on
OASIS and ADNI datasets are more than 90%, which shows
that this method has good classification performance on thin-
layer images.

4.5 Verification on the thick-layer MRI
dataset

To validate the classification results of this study in clinical prac-
tice, we added thick-layer sMRI collected from clinical practice
to ADNI for training and testing. All the thick-layer MR T1-
weighted images were collected by the Guangxi Medical Uni-
versity First Affiliated Hospital, and the thickness of the layer
is 7 mm (a total of 212 subjects, including 62 AD subjects, 90
MCI subjects, and 60 CN subjects). The regional ethics commit-
tee approved the study and obtained written informed consent
from all participants. We guarantee that all participants informa-
tion will be kept confidential and will not be used for commer-
cial purposes.The detailed statistical of all research subjects are
shown in Table 5.

From the previous experimental results, it can be seen that
the EDRSC method using HC features has better classifica-
tion performance of AD (or MCI) and CN. As a result, we
used the HC features method to test the thick layer of sMRI.
The results are shown in Figure 5. Specifically, for classify-
ing AD from CN, when only the ADNI dataset images are
available, the ACC of 94.83% (SEN = 96.10%, SPE = 94.18%,

http://www.oasis-brains.org
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FIGURE 4 The results of verifying the performance of our method on OASIS dataset

TABLE 5 Characteristics of the thick-layer sMRI subjects used in this
study

Diagnosed Number of subjects Gender (M/F) Age (Mean ± SD)

AD 62 32/30 76.13 ± 12.23

MCI 90 64/26 71.09 ± 13.26

CN 60 16/44 56.60 ± 4.480

and AUC = 0.980). When only the collected clinical thick-layer
sMRI images are used for training and testing, the ACC, SEN,
SPE and AUC of 98.18%, 98.13%, 98.49%, 0.999, respectively.
When the thick-layer sMRI was collected and added to the
ADNI database for experiments, the ACC of 95.12%, SEN of
96.54%, SPE of 94.21% and AUC of 0.986, respectively. For
AD and MCI classifications, the results achieved on different
datasets are as follows: The ACC of 98.31% (ADNI), 91.55%
(thick-layer sMRI) and 93.26% (combination of ADNI and
thick-layer MRI), respectively. The SEN of 98.18% (ADNI),
90.24% (thick-layer sMRI) and 90.96% (combination of ADNI
and thick-layer MRI), respectively. The SPE of 98.35% (ADNI),
92.49% (thick-layer sMRI) and 94.58% (combination of ADNI
and thick-layer MRI), respectively. The AUC of 0.993 (ADNI),
0.977 (thick-layer sMRI) and 0.973 (combination of ADNI and
thick-layer MRI), respectively. In MCI versus CN, the proposed

method on ADNI dataset achieved the ACC of 85.77%, SEN of
88.52%, SPE of 82.80%, and AUC of 0.939, respectively. On the
thick-layer sMRI dataset, the ACC of 98.27%, SEN of 98.36%,
SPE of 98.27%, and AUC of 0.999, respectively. When the
thick-layer sMRI was collected and added to the ADNI dataset
for experiments, the ACC of 89.78%, SEN of 92.07%, SPE of
86.91% and AUC of 0.956. The experimental results showed
that regardless of the thin-layer MR images or the thick-layer
MR images, the H-EDRSC method can get good classification
results, which may have higher application value in clinical appli-
cation.

5 LIMITATIONS

Our method has the following limitations. First, in this study,
we only considered the imaging modality for AD, CN and
MCI classifications. However, there are other modalities data
in ADNI, for example, genetic data, blood biochemical indica-
tors and CSF data. These modalities data may also contain other
supplementary information about diseases, which can further
improve the classification performance. Second, studies have
shown that MCI includes pMCI and sMCI, where patients with
sMCI do not convert to AD, and patients with pMCI convert to
AD [58]. We only studied the classification between AD (or CN)
and MCI without a more detailed classification, such as further
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FIGURE 5 The results of verifying the performance of our method on thick-layer sMRI: (a) AD vs. CN (b) AD vs. MCI (c) MCI vs. CN

classification between pMCI and sMCI. Finally, like most stud-
ies, we only consider the binary-class classification problem (i.e.
AD vs. CN, MCI vs. CN and AD vs. MCI), and do not perform
the multi-category classification task. In the future, we will solve
the above limitations and further improve the classification per-
formance.

6 CONCLUSION

sMRI is an effective tool for diagnosing AD. It can be seen
from sMRI that the morphological structure of AD patients
changes significantly compared with the age-matched CN, such
as the decrease of hippocampal volume and the increase of
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ventricular volume. Based on the changes of morphology and
structure, this paper proposed a method for the diagnosis of
AD by extracting EDRSC features based on saliency map of
left and right hippocampus from sMRI, respectively. The open
datasets (ADNI and OASIS) and the collected clinical thick-
layer images were used to carry out the experiments. The exper-
iments showed that this method has higher performance than
the existing feature extraction methods (such as GM density,
cortical thickness and hippocampal volume or shape).
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